If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y1-y2+y1=10y^2=-4
We move all terms to the left:
y1-y2+y1-(10y^2)=0
determiningTheFunctionDomain -10y^2+y1-y2+y1=0
We add all the numbers together, and all the variables
-11y^2+2y=0
a = -11; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-11)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-11}=\frac{-4}{-22} =2/11 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-11}=\frac{0}{-22} =0 $
| 3x+1+3x-1+3x=77 | | 18u-15u+4=19 | | 6x-4(3x-10)=14 | | 3+5x+6x=113 | | x(x-11=)73 | | 26=a2 | | -3(a-8)=6 | | 4b=7b-6 | | x/5+x=2400 | | w2=32 | | m+28=11 | | -16+49=-3(x+1) | | x+3×=×+×+10 | | -8(7-2x)=-104 | | 3a-61+2=81+20-5a | | 3x+17+7x-15=8 | | -3(-x+2)=3x | | r+1+3r=13 | | x+7+2x+19=71 | | X/10=-7x-32 | | 9=-17-13x | | −5(4x−4)−2x−4=−28 | | -4-6x+x=1 | | 4x+x-2=40 | | 24-10x-8x=6-6x= | | 9=4z−3 | | -5-8f=-7f+4 | | 7p–5=6p+8 | | 2x+13=3x=17 | | 12=2j-10 | | 18=-6m+8m+12 | | 3.7+10m=8.64 |