If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2+12y=7
We move all terms to the left:
y2+12y-(7)=0
We add all the numbers together, and all the variables
y^2+12y-7=0
a = 1; b = 12; c = -7;
Δ = b2-4ac
Δ = 122-4·1·(-7)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{43}}{2*1}=\frac{-12-2\sqrt{43}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{43}}{2*1}=\frac{-12+2\sqrt{43}}{2} $
| 11x^2+25x-46=0 | | |x-2|=1 | | 25=10k-5 | | 3=9-3s | | 14p-1=12p+1 | | 8=w-2 | | 3=t-3 | | 2(4u+4u+76)=360 | | b+16=25 | | 2w/5=10 | | 4r^2-9r+2=0 | | (2x^2-5x)(4x^2-12x+10)=0 | | 4u+76=4u | | 3^x+2+4*3^x+1=63 | | u+7=18 | | 4u=4u+76 | | 5w-12=6w-32 | | c+3=7c-51 | | p+11=26 | | 7x+24+3x+92=360 | | 10r=84+4 | | 15/4=3v | | 3v/2=48 | | 6x+48/6=5 | | 10^w/3=40 | | 2x+76=360 | | x=4−3x+6 | | (8−3a^2)(2a^2+6)=0 | | 4(2x-3)-2(2-3x-6x=1-2x | | 5/7y=27 | | 4(x-4)=-2(-x+2) | | 0=7+d |