If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2+2y-164=0
We add all the numbers together, and all the variables
y^2+2y-164=0
a = 1; b = 2; c = -164;
Δ = b2-4ac
Δ = 22-4·1·(-164)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{165}}{2*1}=\frac{-2-2\sqrt{165}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{165}}{2*1}=\frac{-2+2\sqrt{165}}{2} $
| 7/4=-1x | | 4b^2-15b-2=0 | | v÷4=1.3 | | 1.4x5=7 | | 2(x^2+5x+4)(2x+5)=0 | | 0.6x5=3 | | f÷ 9 = 3/10 | | 2(45+7x)=75-8x | | 4·0.3=d | | m+87=87 | | m÷1=6.7 | | k÷ 12= 14 | | k÷1/2=1/4 | | 4(2n+1)=9(7n+8)+5 | | 2x+3=×+4 | | b-5/2=2/3 | | b·7/8=1/2 | | 0=-4x^2+7x+132 | | f−53=44 | | 0=4x^2-7x-132 | | r+13=99 | | 0.12(y-9)+0.16y=0.18y-0.1 | | h+23=99 | | 6=b−79 | | w+41=63 | | (x2+5x+4)–(2x2–3x+6)=… | | 4^3x+2=3^5x-4 | | 5y=30y= | | 25x+225=300 | | 25x+225=300x | | x=125/343 | | 4x+-4x=1 |