If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2+4y-192=0
We add all the numbers together, and all the variables
y^2+4y-192=0
a = 1; b = 4; c = -192;
Δ = b2-4ac
Δ = 42-4·1·(-192)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-28}{2*1}=\frac{-32}{2} =-16 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+28}{2*1}=\frac{24}{2} =12 $
| 41=1-8h | | 7x/5x+15=7/8 | | -17=7-4w | | 4r+6r-19=1+12r | | -3-5(x+1)=-3(4+2x)-1 | | 5()=5z+15 | | 28x2+80x-168=0 | | 2x*x+2=198 | | X3+x2+2x+2= | | 3x=16+8-x | | 14m3+42m5-77m7= | | 14m3+42m5-77m714m3= | | X+3/x-4=x-5/x+4 | | 36.6^2x+6=6^x2 | | 12^5y=6 | | (y-8)=180 | | n^2+5n=50 | | (z-2)=15=180 | | 14-3y=12 | | (x+30)=(2x)=180 | | 7z=28/3 | | X^4-9x^2+16=0 | | 2+x-9=11 | | 2z+8/3=1z/4+5 | | 2x-1=2x-10 | | C+1=2c-3 | | -5m+10=(5) | | x=12-1/3× | | 3-4x-10=-7-4x | | 5^x=88 | | 2(x–1)+3–x=1+x | | 7x+3–(9x–5)=27–2x |