If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2+64y-1536=0
We add all the numbers together, and all the variables
y^2+64y-1536=0
a = 1; b = 64; c = -1536;
Δ = b2-4ac
Δ = 642-4·1·(-1536)
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-32\sqrt{10}}{2*1}=\frac{-64-32\sqrt{10}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+32\sqrt{10}}{2*1}=\frac{-64+32\sqrt{10}}{2} $
| 5(2p-1=) | | 18c=864 | | 4m+3m-1=13 | | 7s=567 | | 6x+9-3x=-21 | | 14d=462 | | 3(r-18)=6 | | 3x+5x=6x-44 | | 13=j+1 | | 2(4+x)=18+5x+20 | | 3(x+6)+3=6x | | 19^-3x=53 | | 7r+25=74 | | -9(-2f+1)=-9+18f | | -63p+56=0 | | -16a=-160 | | -180=15w | | -14=w/15 | | 40=-2r | | 4(2y-8)=60 | | -2r=-26 | | 5(x-3)=3x-12 | | 13=b6 | | 75-20y=50 | | 20j+7=5+20j+12 | | -4(5w-2)=-20-6+14 | | 5+2t-6=6 | | 2/3(3x+6)=3x-4x=8 | | 3x-5=0.5x=2 | | 0.36-0.81m^2=0 | | -4(5w-2)=-20w-6+16 | | y+38=20 |