If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2+6+16y+41=0
We add all the numbers together, and all the variables
y^2+16y+47=0
a = 1; b = 16; c = +47;
Δ = b2-4ac
Δ = 162-4·1·47
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{17}}{2*1}=\frac{-16-2\sqrt{17}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{17}}{2*1}=\frac{-16+2\sqrt{17}}{2} $
| c/3+4=-2 | | (3x-2)^2=144 | | 25(5^3x)=1/625 | | 5x+6(x+1)=x-2(x+3) | | p/2-5=-3 | | x4+-6x3+-5x2+42x+40=0 | | x-5/25+x+1/5=1 | | x²+-121=0 | | 2500+90x=Y | | 7+4x=8+2x | | 4(3+x)+-5=2x+8(3*4+x*4)+-5=2x+8(12+4x)+-5=2x+8 | | z/2+2=4 | | 4^x^2+9=16^3x | | 5z+3=1 | | 3z/8+6=-4 | | 2(x-1)-(4-x)=12 | | 6(x+1)-4(x-1)=0 | | 12x6=6x12 | | z/9+4=5 | | 0.84=(x–48)/7 | | 7(2x-1)-3(4x+1)=0 | | 78-8a=5a | | .4x-3=1.33(4x-3) | | 2x²+5x-7=0 | | -3+x+4=-1+2 | | X=6x+8 | | 10+5(2y-3)=25 | | 6x+3=2x–5 | | 7x/6-1/6=-9 | | 3(n+3)=5/8(8n+24) | | 3x+3=9-2x | | 6+7x+9=4x+17+2x |