If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2+y-20=0
We add all the numbers together, and all the variables
y^2+y-20=0
a = 1; b = 1; c = -20;
Δ = b2-4ac
Δ = 12-4·1·(-20)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-9}{2*1}=\frac{-10}{2} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+9}{2*1}=\frac{8}{2} =4 $
| 23+x/4=27 | | 6x-10x+x=0,3 | | 2/5=k/15 | | .2y=18 | | 1.3y=108 | | i+3=6i-22 | | 70/m+20=34 | | 5/7,5=2/x | | 6x^2-50=(3x-5)(2x) | | 39=Cx3 | | 2=a/36+17 | | 10x+36=292 | | -6(7n-16)=8+2(-13n-4) | | x4=1.64 | | -2(5h+5)=-5(-3h-8) | | 2(q+11)=-9q-14+15q | | 4x-5=1/5(5x+20) | | 5(14z-2)=9(z-20)-13 | | 5(14z-2)=9(z-20)-14 | | 12+x/2=-8 | | 3(-7d+13)=-18d-15 | | -13t+5=-7(5t+20)-9 | | -2(-12j+20)=4(-2+4j) | | -7(3y-6)=-14y | | 1=5-z-z | | 8b+9-8b=3b+6(13b-12) | | -15.6q-19.28=16.23-10.3q | | 6.3n=-14.88+5.5n | | 10.7h+19.61=-18.3+6.2h-17.89 | | 2(x+4)(3x-6)=0 | | 18.02-10.2v=-11.9v | | 11.95+13.3y=-12.53+8.5y |