If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2-25y+100=0
We add all the numbers together, and all the variables
y^2-25y+100=0
a = 1; b = -25; c = +100;
Δ = b2-4ac
Δ = -252-4·1·100
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-15}{2*1}=\frac{10}{2} =5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+15}{2*1}=\frac{40}{2} =20 $
| y+120=360 | | 4y+50+2y+10=360 | | 9^(2x-15)=(1/27)^4x | | 10=12x-9 | | 9x2-6x+10=0 | | 9x2+13x-3=0 | | 18x2+14x-18=0 | | 12x2+10x+6=0 | | 15x2+20x-11=0 | | 16x2+2x-6=0 | | 17x2+7x+9=0 | | 9x2-11x-17=0 | | 15x2-12x-10=0 | | 16x2-18x-2=0 | | 7x2-19x-1=0 | | 14x2-16x-5=0 | | 5x2-19x-7=0 | | 2x2+3x-13=0 | | 17x2-20x-10=0 | | 7x2-16x+10=0 | | 16x2+14x-20=0 | | 17x2+12x+15=0 | | 15x2-15x+14=0 | | 20x2-16x-14=0 | | 19x2+5x-1=0 | | 20x2+11x-17=0 | | 11x2+5x+5=0 | | (3x-15)(7x+21)=0 | | 10x2-15x-11=0 | | 5x2-3x-9=0 | | 17x2+19x-12=0 | | 20x2+x-11=0 |