If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2-37y+342=0
We add all the numbers together, and all the variables
y^2-37y+342=0
a = 1; b = -37; c = +342;
Δ = b2-4ac
Δ = -372-4·1·342
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-37)-1}{2*1}=\frac{36}{2} =18 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-37)+1}{2*1}=\frac{38}{2} =19 $
| 8x+21+16=180 | | 3x+55=2×+10 | | 11y-14=9y+4 | | (5+x)(x)=84 | | 100+22p=70+25p | | 133+10x+7=180 | | 12+5p=18+3p | | 5+x(x)=84 | | 118=13x-25 | | 40x=250 | | 3n+72=1n-16 | | 450+30x=250+40x | | x2−10x+31=0 | | 13+0.10x=0.01x-0.31 | | r-8=19 | | 3x^2+7x+20=0 | | x^2+4x-9=2 | | 63=63c | | 3u+9=3 | | 63=xx9 | | 15+q=27 | | d/4-6=-10 | | 79+-5x=-11x+137 | | -34=-7x | | y^{2}-8y+25=0 | | (x+3)^7=77 | | (3x+12)+72=180 | | 3/2x+2=21 | | 4x=0.016x^2 | | (15x+8)=(21-10 | | (7x-46)=(9x-64 | | 5a+5=-3a-1 |