If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2-39=0
We add all the numbers together, and all the variables
y^2-39=0
a = 1; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·1·(-39)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{39}}{2*1}=\frac{0-2\sqrt{39}}{2} =-\frac{2\sqrt{39}}{2} =-\sqrt{39} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{39}}{2*1}=\frac{0+2\sqrt{39}}{2} =\frac{2\sqrt{39}}{2} =\sqrt{39} $
| 4x-29=90 | | 14m^2-41m-3=0 | | 6(3+8v)=30 | | f2=-14 | | 2/5c+3/5=18 | | 9n–9=9 | | x2+1=x3-2 | | -1/6=2/5(x-1)-(x-2/3) | | 15w-14w+5w=6 | | 2(3-x)+3(2-x)=32 | | 4.6(2.5p-2)=6.9 | | 7w-40=1/2*(4w-18+w+19) | | 4w+4=3w | | 4c-2c+5c+2c=18 | | -6v+4=8-10v | | x=0-2(1) | | 1.6x+0.3x=11.6+2.3x | | 7x+4(3x)=-38 | | 11m^2-38m=0 | | 1-x+20=x-7+5x | | d+8=5d | | 3w-20+w=90 | | x^2+12.5x+50=0 | | 32a/4+6.2=7.32 | | -10j=-9+4 | | 4x+2.50=12.50 | | 28u^2+15u=0 | | 2x+23-4x-29=90 | | 20x-19x=20 | | x+15+(2x)=180 | | -2b+8=6b | | 14+n=-1 |