If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2-9y=20
We move all terms to the left:
y2-9y-(20)=0
We add all the numbers together, and all the variables
y^2-9y-20=0
a = 1; b = -9; c = -20;
Δ = b2-4ac
Δ = -92-4·1·(-20)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{161}}{2*1}=\frac{9-\sqrt{161}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{161}}{2*1}=\frac{9+\sqrt{161}}{2} $
| y^2-9y=20 | | -5u/2=-30 | | x(16^2-1)=0 | | 3n+12n=3( | | -6(-4u+4)-5u=4(u-2)-6 | | -(-4u+4)-5u=4(u-2)-6 | | (4x-3)(16^2-24x+9)=0 | | 2x-7x+7=x-6+13 | | (x/10)+3=6 | | 9-2x+5x=24 | | 4n^2-2n-1=0 | | 0=-4.905t^2+20t-15 | | 800=50x+100 | | 0=-4.905t^2+20t+15 | | 65÷s=15 | | 5x-2x+4=2 | | 144÷12=n | | 9=s-20 | | 99-n=6 | | j-12=23 | | 2x+21+4x-3=180 | | 3x+14+62=180 | | 7x-15+21=180 | | 3(4z+2)-9=105 | | 6x+21+-3x+9=90 | | (-4x-2)+(13x=1)= | | 7x-3+6(x+1)=90 | | 7x-3+6(x-1)=90 | | Y=-1/605(x-110)(x+110) | | 4^(3x-1)=56 | | (-4x+2)+(13x=1)= | | Y=1/4x-15 |