If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2=1.96
We move all terms to the left:
y2-(1.96)=0
We add all the numbers together, and all the variables
y^2-1.96=0
a = 1; b = 0; c = -1.96;
Δ = b2-4ac
Δ = 02-4·1·(-1.96)
Δ = 7.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{7.84}}{2*1}=\frac{0-\sqrt{7.84}}{2} =-\frac{\sqrt{}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{7.84}}{2*1}=\frac{0+\sqrt{7.84}}{2} =\frac{\sqrt{}}{2} $
| 6^x+2=720 | | x*0.75^x=0.5 | | 90=6/7x | | 6=-3/x+2 | | X=7,x2-2x+7 | | 16x/3+2=50 | | 45x÷9=10 | | 3x-8=8x+2 | | 5c-15=8C-48 | | 6-12x=4x-2 | | 14-3x=6x-4 | | 7+2x=x+12 | | 7t+2t^2-15=0 | | x/8+9=1 | | (3/4)x-(7/12)x=1 | | 3/4x-7/12x=1 | | z/8+8=9 | | 15=7t+(2t*2t) | | 3^(2y)+3^(y+1)=10 | | 4^(x-5)=64 | | 2(1+3x)=4x+7 | | 7+8-x/2=10 | | 2(2x+20)=84 | | 2(4x+5=26 | | 9+9493049+223=38849992923 | | 7+8−x28−x2=10 | | 3,5x+10=22-2,5x | | 6f-15=21 | | -8+4x=-32+25 | | 1/4x-1/4=3.3/8 | | -4-7(-3x-6)=195 | | 1,5x=18 |