If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2=153
We move all terms to the left:
y2-(153)=0
We add all the numbers together, and all the variables
y^2-153=0
a = 1; b = 0; c = -153;
Δ = b2-4ac
Δ = 02-4·1·(-153)
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{17}}{2*1}=\frac{0-6\sqrt{17}}{2} =-\frac{6\sqrt{17}}{2} =-3\sqrt{17} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{17}}{2*1}=\frac{0+6\sqrt{17}}{2} =\frac{6\sqrt{17}}{2} =3\sqrt{17} $
| 1500=(5)100x | | 7=x+33/8 | | 20(x)=70+10(x)= | | .5(10x+13)=3.7(.2+5) | | 6=k14 | | -4x-12=40 | | 2+j=16 | | 7x-96=30x+42 | | x-79/2=6 | | 360=8x-2 | | 3(x-93)=18 | | c/7+29=34 | | 5.5x+100=30.25+10 | | 6x2+10x-4=0 | | 5.5x+100=30.25 | | -4n-9n=33 | | x/4-14=-9 | | 8x^2+63-8=0 | | 3x+48=1/3x | | 35-3x=89 | | 3.5x=9.90 | | 0.12t+-0.6=-0.06 | | 14x-14=2x=46 | | s/3+-4=2 | | 35−3n=8 | | 35−-3n=89 | | x-0.12(x)=2000 | | ()3x=60 | | ()x+x+45=155 | | -8x+18=34 | | ()x-x+45=155 | | x/10+76=86 |