If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2=165
We move all terms to the left:
y2-(165)=0
We add all the numbers together, and all the variables
y^2-165=0
a = 1; b = 0; c = -165;
Δ = b2-4ac
Δ = 02-4·1·(-165)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{165}}{2*1}=\frac{0-2\sqrt{165}}{2} =-\frac{2\sqrt{165}}{2} =-\sqrt{165} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{165}}{2*1}=\frac{0+2\sqrt{165}}{2} =\frac{2\sqrt{165}}{2} =\sqrt{165} $
| .2(x+25)+3=5 | | -2+4(x-3)=4x | | 63=3(x-54) | | .5(x+8)-9=2 | | 2(4^2x-4)=106 | | .5(x+25)+3=5 | | 1/(16x)=8 | | y2=153 | | 1500=(5)100x | | 7=x+33/8 | | 20(x)=70+10(x)= | | .5(10x+13)=3.7(.2+5) | | 6=k14 | | -4x-12=40 | | 2+j=16 | | 7x-96=30x+42 | | x-79/2=6 | | 360=8x-2 | | 3(x-93)=18 | | c/7+29=34 | | 5.5x+100=30.25+10 | | 6x2+10x-4=0 | | 5.5x+100=30.25 | | -4n-9n=33 | | x/4-14=-9 | | 8x^2+63-8=0 | | 3x+48=1/3x | | 35-3x=89 | | 3.5x=9.90 | | 0.12t+-0.6=-0.06 | | 14x-14=2x=46 | | s/3+-4=2 |