If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2=3300
We move all terms to the left:
y2-(3300)=0
We add all the numbers together, and all the variables
y^2-3300=0
a = 1; b = 0; c = -3300;
Δ = b2-4ac
Δ = 02-4·1·(-3300)
Δ = 13200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13200}=\sqrt{400*33}=\sqrt{400}*\sqrt{33}=20\sqrt{33}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{33}}{2*1}=\frac{0-20\sqrt{33}}{2} =-\frac{20\sqrt{33}}{2} =-10\sqrt{33} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{33}}{2*1}=\frac{0+20\sqrt{33}}{2} =\frac{20\sqrt{33}}{2} =10\sqrt{33} $
| x-3=-1/3x+1 | | 1/3(x+2/3)=1/6(×-4) | | 6/x+10=40 | | 1/2(8y+16)=4y(8) | | f/7+35=38 | | 3x-9=16-2x | | -3I+1+7k=33 | | m-21=-36.6 | | 11/n=8/5. | | 5(9x+1-6x-9)=0 | | 5-(-3)=n | | 22-3j=4 | | 1000=(2x)(4x)(x) | | A2-18a=5 | | 22−3j=4 | | 3s-10=5 | | n/3-1=-4 | | 24a=28 | | 10−2u=4 | | x/3.2=-1/4 | | 185x+185x=29 | | y2=341 | | 8y—3y—1=24 | | y2=493 | | -2-c=5 | | 6(1-x)-5(3-2x)=0 | | 7+4x=113 | | y2=137 | | 1/1-x=10 | | 95=-5t^2-4t+120 | | 0=t^2+0.8t-5 | | 152+x=180 |