If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2=336
We move all terms to the left:
y2-(336)=0
We add all the numbers together, and all the variables
y^2-336=0
a = 1; b = 0; c = -336;
Δ = b2-4ac
Δ = 02-4·1·(-336)
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{21}}{2*1}=\frac{0-8\sqrt{21}}{2} =-\frac{8\sqrt{21}}{2} =-4\sqrt{21} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{21}}{2*1}=\frac{0+8\sqrt{21}}{2} =\frac{8\sqrt{21}}{2} =4\sqrt{21} $
| 4w-19w=90 | | 0.2x-3.2=5(1.8) | | 3x+43=7×+7x | | -3(6x+8)=-144 | | -7(-3x-3)=-42 | | (16x+4)°=110°=(3x+11)° | | 4x-12+5x=24 | | 6(7x-8)=78 | | 3x+43=7×+7 | | (8m+1)/2+m/3=m+4 | | 15x1=13 | | 4x+5+10x-40+6x+5+90=360 | | 10x=7x−3 | | -62-9x-x=58 | | 10s=7s−3 | | 4x+5+10x-40+6x+5=360 | | -8x+7x-13=6 | | 6y+15=−3 | | −5x+19=−21 | | 4(p-5)-8=2p | | 447=14-n | | 2x-58+5x=47 | | |8z+14|=-30 | | 3x–10+5x=70 | | -41=1/3y | | x/500x=5 | | 2-1x=1 | | 10y-99=y | | 11x+21=9x+23 | | -4x+6.6+0.1=-(3x+1)-3 | | -5x–10=12 | | 3/8(t)=12 |