If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2=39
We move all terms to the left:
y2-(39)=0
We add all the numbers together, and all the variables
y^2-39=0
a = 1; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·1·(-39)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{39}}{2*1}=\frac{0-2\sqrt{39}}{2} =-\frac{2\sqrt{39}}{2} =-\sqrt{39} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{39}}{2*1}=\frac{0+2\sqrt{39}}{2} =\frac{2\sqrt{39}}{2} =\sqrt{39} $
| 3x+6+4x-9=43 | | Có4x=1/3 | | 22=11w | | 3(4x+2)-7=-2 | | 2(x+6)-5(2x-3)=13 | | 6.1x-4.5(3-2x)=9.15 | | Q=15-3p | | D=5/4(m-91) | | 12x-123=7x+62 | | 10y-2(3-2y)=4y+10-2y | | 6+3.x=2x | | 2x-158=12x+182 | | (X-5)^2(2x-4)=0 | | (2x+15)+111=180 | | -(8-2n)=8-2(12-3n) | | 21x+182=38x+98 | | (7/2)+2=(4/x^2) | | (√(7x^2+5x-3))=x | | 1/3x-15=12 | | 9x-7=2x-8 | | 1m-6m=-10 | | 5x-4=8+2+3× | | 8x-47°=180° | | 6x-12+2x=3+2x-15 | | m2-7m-8=0 | | 2t=3(t-1) | | 42=x+6+x-9+x | | -7(x-3)-30=9 | | x=24/(x-7) | | 2/4x+5=13 | | 750+5x=1350 | | -5=x/4+2 |