If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2=40
We move all terms to the left:
y2-(40)=0
We add all the numbers together, and all the variables
y^2-40=0
a = 1; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·1·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*1}=\frac{0-4\sqrt{10}}{2} =-\frac{4\sqrt{10}}{2} =-2\sqrt{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*1}=\frac{0+4\sqrt{10}}{2} =\frac{4\sqrt{10}}{2} =2\sqrt{10} $
| 7x+1=19x-33 | | m(5000-200)=3000 | | 13x14=-5+12x | | 6p+3=0 | | 1e=1.2 | | 4y+16y=20 | | 9/4+k=-13/10 | | n+(-8)=-5.314 | | 13−4x+2=3x−7x+2 | | d-1.9=5.2 | | p-37.5=4.9 | | 7x+3x=8x/7 | | p-12=36 | | (6x-4)(4x+14)=x | | 10x=8+9x | | x2+11x+37=7 | | 8q^2–14q+3=0 | | 8x+7x=11x/3x | | 4=2t-1 | | 8q2–14q+3=0 | | w-61/5=93/4 | | -6n-3=51 | | Y=x+1/3-4,2,8 | | —6n—3=—51 | | 4d-2=12 | | 11u^2–2u=0 | | X=(6x-4)(4x+14) | | 32-14=2x-4-x | | 11u2–2u=0 | | 60-y=159 | | 2(p+6)=6(p–0) | | -11-96u-59=-11(8u-995) |