If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2=41
We move all terms to the left:
y2-(41)=0
We add all the numbers together, and all the variables
y^2-41=0
a = 1; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·1·(-41)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{41}}{2*1}=\frac{0-2\sqrt{41}}{2} =-\frac{2\sqrt{41}}{2} =-\sqrt{41} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{41}}{2*1}=\frac{0+2\sqrt{41}}{2} =\frac{2\sqrt{41}}{2} =\sqrt{41} $
| 7h=-(12h-18) | | -18x+-34=10 | | 2(h-7)=2 | | t+5=4 | | 15y=-12+18y | | -14+14x=56 | | 5(v-6)+5v=-80 | | 7(-2)+y=4 | | 0.2x+3.3=0.7x-1.2 | | 380+10x=800+25x | | 160=-5x-4(-x-10 | | g−7=6.04 | | 10/x=3/9 | | 4(7n+2)=64 | | 2r+1/2(2r-4)=2r-8 | | 3(q+8)=3q+24 | | 36=2v+7v | | 1.2x-(-3.6)=14.4 | | u+4/3=-1 | | -9=-11+n/7 | | 30=5(r) | | 3/2m-1/3=5/18 | | v/3=3.7 | | 4x2+5x-84=0 | | 27+6.00x=27+8.25 | | 16=-4(r+-5) | | –17=3(z−16)−17 | | 8h+16h-12=-12 | | 3(n+8)=2n+5 | | 15y-19=15y+19 | | 3p+8p=-4+8p+2p | | 2n+15+3n+40=180 |