If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2=900
We move all terms to the left:
y2-(900)=0
We add all the numbers together, and all the variables
y^2-900=0
a = 1; b = 0; c = -900;
Δ = b2-4ac
Δ = 02-4·1·(-900)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*1}=\frac{-60}{2} =-30 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*1}=\frac{60}{2} =30 $
| 3D+14=4d | | x3=-343 | | 3/m=2/11 | | 17+11d=10d | | 3(m+2)=2- | | -3.2t=-0.96-3.3t | | 5a+3=5a+9 | | 9-5k=12-(6+7) | | 14x+2=9x+3 | | 4(2r-3)=28 | | -17=3w-8 | | -6(x-2)-4=4(x-8) | | 4(2r−3)=28 | | (1/4)(8x+20)+3x=2x+15 | | 8x-4x-2+1x=3(x+2) | | |x-3|=6x+12 | | -3D+14=4d | | 3(4r+5)-2(3r+4=7) | | -2-z=-10z+16 | | X-6/7=x/5 | | 2a+8=-6 | | 11q+13+8q=7+20q | | X+2=6(x+1) | | 153=53x | | 15r+3=18r | | 30=1.4x | | 45=3u-9 | | 5(u-8)=-9u+30 | | -14.52+4p-17.7=7.5p+10.83 | | -64=-8n+5 | | -8x+44=-6(x-7) | | v/12=11/13 |