If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y2=916
We move all terms to the left:
y2-(916)=0
We add all the numbers together, and all the variables
y^2-916=0
a = 1; b = 0; c = -916;
Δ = b2-4ac
Δ = 02-4·1·(-916)
Δ = 3664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3664}=\sqrt{16*229}=\sqrt{16}*\sqrt{229}=4\sqrt{229}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{229}}{2*1}=\frac{0-4\sqrt{229}}{2} =-\frac{4\sqrt{229}}{2} =-2\sqrt{229} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{229}}{2*1}=\frac{0+4\sqrt{229}}{2} =\frac{4\sqrt{229}}{2} =2\sqrt{229} $
| j^2-36=0 | | 9^2x–2=5 | | 10a−3−4a=6a−3 | | -12+6x=2(21x+40)+x | | k2=9 | | 6y+1=4y+3 | | z–8/6=-1 | | 295+y)=18 | | z–86=-1 | | 10x+18-8x=4 | | 44=4(s+3) | | 44=4(s+3)s=-7s=8 | | 3x-1+x+2=9 | | 1-2x=(1-x) | | 5(x+6)=2(x-3)+4 | | 2n+18=16-4n-28 | | 3x^2+6x-30=0-6 | | -7+3y=8 | | -(5a+6)=2(3a=8) | | 14(b+30)=-169 | | -5(6n+6)=3= | | -3(4v-2)=42 | | 5y+18=180 | | 5y+18=90 | | 6b−4b=16 | | j+12/4=16 | | n^2=42-n | | 2x+8-21=29 | | 9-2m=6 | | 2/3(9t-27)=36 | | z+51.2=3.6 | | 5x+10+6x+2=180 |