y=(4-y)(4+y)

Simple and best practice solution for y=(4-y)(4+y) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y=(4-y)(4+y) equation:



y=(4-y)(4+y)
We move all terms to the left:
y-((4-y)(4+y))=0
We add all the numbers together, and all the variables
y-((-1y+4)(y+4))=0
We multiply parentheses ..
-((-1y^2-4y+4y+16))+y=0
We calculate terms in parentheses: -((-1y^2-4y+4y+16)), so:
(-1y^2-4y+4y+16)
We get rid of parentheses
-1y^2-4y+4y+16
We add all the numbers together, and all the variables
-1y^2+16
Back to the equation:
-(-1y^2+16)
We get rid of parentheses
1y^2+y-16=0
We add all the numbers together, and all the variables
y^2+y-16=0
a = 1; b = 1; c = -16;
Δ = b2-4ac
Δ = 12-4·1·(-16)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{65}}{2*1}=\frac{-1-\sqrt{65}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{65}}{2*1}=\frac{-1+\sqrt{65}}{2} $

See similar equations:

| -16t^2+80t+10=0 | | x-x-6=2x-14 | | a(2)=5+(2-1)(-3) | | 5,22x=162 | | 3(y+6=30 | | 19=31,5·0,887^x | | 8^x=512 | | X+2(x+2=22 | | -16t^2+80t+8=0 | | 9x+14=184 | | x=1/5-7/4 | | 3x-x=5/4+1 | | x=1/5=7/4 | | 12=4(u-3)-8u | | 2x+10=-35-7 | | (4)=-5y-6 | | 2-(x-2)=8 | | (3x-2)^2(x-2)=0 | | 5y-8=45 | | 4x+2+6x+5=18-6x+9x+20 | | (-2x+4)(x-5)=0 | | 27x^2-60x-28=0 | | (4x-2)/3=6 | | 3/5w=9/10 | | 2(5r+60)=20(2r-12) | | (5n-4)(6n+7=0) | | 6x-2=3x-5 | | 3(u-9)-5=-4(-6+4)-9u | | 6(2x+3)=10x | | X+(x+1)=149 | | 6/15d+9/30d-1/6d=d+1,5-2/12d | | 2(2n^2-n-45=0 |

Equations solver categories