If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z(z+1)=20
We move all terms to the left:
z(z+1)-(20)=0
We multiply parentheses
z^2+z-20=0
a = 1; b = 1; c = -20;
Δ = b2-4ac
Δ = 12-4·1·(-20)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-9}{2*1}=\frac{-10}{2} =-5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+9}{2*1}=\frac{8}{2} =4 $
| -20+2w=20-2w-4 | | -20+2w=30-2w-4 | | 19z=18z+10 | | 4^x=100 | | 6(3z+1)-z-22=0 | | 6(3z+1)-z-22=1 | | 55-31^x=0 | | 2b+b+(1/2b-2)=180 | | (1/5x)+(1/4)=1 | | 1/5x+1/4=1 | | 55=31^x | | -8(w+3)=-3w+6 | | -4f+20=-2f-18 | | 10-(3x+6)=10 | | 3/4x+2=5/4-6 | | 3u-31=-2(u-2) | | 20y+20=17y-20+1 | | X/x-4=16/x^2-4x | | -8+8q=9q | | -15x^2=6x-5x^2+7 | | x^2-32x+512=0 | | 3x+4=6x2 | | 3k-k-k=15 | | 19r+14=5+16r | | -19+15-2n=18-4n | | 12x-10x-x+x-x=8 | | 17=5+2x/3 | | -20+8j=9j | | 12x–10x-x+x-x=8 | | x^-0.75=1/16 | | B+8=-8b-19 | | 11x-30+102=180 |