If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2+10z=0
We add all the numbers together, and all the variables
z^2+10z=0
a = 1; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·1·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*1}=\frac{-20}{2} =-10 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*1}=\frac{0}{2} =0 $
| 71=-13+6/7y | | 31=1/7a+22 | | X+3+y=180 | | 7x7x=220.5 | | 43=4/9y+3 | | 6x=67+14 | | X=-81+-3x | | X+14+10x-4=180 | | 2x-1=12-3 | | -10=c/11-13 | | -6+7x=49 | | 3x-15°=2x-20° | | 4.74/21=x/1 | | -1+8z=73 | | 1.6≥=0.8x+4 | | 2x40=2x4= | | 8x+4=23-11 | | X2+8x-76=0 | | 2(5x-3)=76 | | G(x)=5+1-2 | | -86=10b+24 | | 4^x=14x+2 | | G(x)=5-4-2 | | 3x+20=4x+10+3x | | 14x+10=(8x+9)+(5x+12) | | 3x=3x+20+4x+10 | | 3x+20°=4x+10° | | 2.4x1.89=4.536 | | 2.4x1.89=4 | | G(-4)=5x-2 | | 1.25r=0.25 | | 7x+13=328 |