If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2+25z+24=0
We add all the numbers together, and all the variables
z^2+25z+24=0
a = 1; b = 25; c = +24;
Δ = b2-4ac
Δ = 252-4·1·24
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-23}{2*1}=\frac{-48}{2} =-24 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+23}{2*1}=\frac{-2}{2} =-1 $
| -12j+6j+18=-2-4j | | r-12=3r-6 | | 120/2=360/x | | 2/120=x/360 | | 5/3t+4=28 | | 42w=84 | | 9h-4=14 | | 7776^-1=6^2x-7 | | 16(2x-8)=2+x | | 5/3w+4=14 | | 1/2n+40=50 | | 8^(4x)=13 | | 10a=100.000 | | -6(-3p+12)=10p+8 | | 25q^2-20q+4=0 | | 47=37+u | | w+7=8w-18=4w-20 | | 2z-97=2z-64=z | | 9t-45=8t-32 | | 4xy=48 | | 3w+49=10w | | 13(-4b-7)=-3b+7 | | 13(-4b-7)=3b+7 | | 4w-20=8w-18=w+7 | | x*100=12003 | | x/10=1200.3 | | 5(14v+1)=10v+5 | | -2t+5+9t=4t+2 | | p+54=2p-40 | | r/4+8=20 | | t/4=8=20 | | 17v-56=9v |