If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2+5=11
We move all terms to the left:
z2+5-(11)=0
We add all the numbers together, and all the variables
z^2-6=0
a = 1; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·1·(-6)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*1}=\frac{0-2\sqrt{6}}{2} =-\frac{2\sqrt{6}}{2} =-\sqrt{6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*1}=\frac{0+2\sqrt{6}}{2} =\frac{2\sqrt{6}}{2} =\sqrt{6} $
| .50·n=3 | | -6(y+4)=-6 | | w-8+6=20 | | 5(n+4)=-35 | | -t+(2t-8)=-18 | | 11/24=-5/6x | | -3x-1=2(x+34) | | 5n+2(1-n=2(2n-1) | | 3x+10+2x+40+3x+30=180 | | 3m-6-1m=2 | | 3(j-3)=12 | | -t+(2t-8)=-36 | | 3z(z=9) | | 3x=-1.50 | | −2x+3=7 | | 3x-5=-5x-2 | | -2(2n-24)=-12 | | u+2.66=8.94 | | 4-2f(f=1) | | -2x+6=-8x-36 | | 2(-6+2/4=y | | -6+x/5=-15 | | -125=25-5n | | (5x-4)+(3x-5)+1x=180 | | 171=5x+8x+2 | | -4x9=115 | | 9-b(b=8) | | 4/19=x | | P=-100t+15,000 | | y=-5(6)+30 | | 3x-11+x+41=360 | | 4/7+p=(-5/7) |