If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2+8z+1=0
We add all the numbers together, and all the variables
z^2+8z+1=0
a = 1; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·1·1
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{15}}{2*1}=\frac{-8-2\sqrt{15}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{15}}{2*1}=\frac{-8+2\sqrt{15}}{2} $
| 3^1/10s=61/5 | | 8x–12=4x+16 | | 8+x4=88 | | 9x-(-6)=24 | | 5x+650=4.9x^2+700 | | 11=p/7+3 | | 2|3a+5=10 | | -15w-8=37 | | -5p-2=18 | | (x)=x+(40-x) | | 0.4x+8=x+1 | | S(x)=x+(40-x) | | 0.4x-8=x+1 | | (3x-1)^6=-540x^2 | | x18+x10=544 | | x+(x-40)=x*x=40 | | 6+5b=24 | | x+(x-40)=x | | y2-4y-1=0 | | 3a-4=8a | | 7p+7=-35pp= | | -3r-10=-46 | | 6.4/x=4/5 | | 4/4=x-5.6 | | 5-2x^2=10 | | X^2+8=2(x^2-4) | | s2+3s-40=0 | | -18=3x+2+x | | X2+3x+13=0 | | 8v2+36v+29=0 | | 4s=212 | | 3n^2=15 |