If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2-11z-24=0
We add all the numbers together, and all the variables
z^2-11z-24=0
a = 1; b = -11; c = -24;
Δ = b2-4ac
Δ = -112-4·1·(-24)
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{217}}{2*1}=\frac{11-\sqrt{217}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{217}}{2*1}=\frac{11+\sqrt{217}}{2} $
| 4x2-12x=7 | | 4z2+4z=-1 | | 2t+1=-1.0413 | | (3x)^-2/3=16 | | 2x^2/2^x=0 | | y2-5y-24=0 | | 2x^2/2^x=16^(3/2) | | -15x+29=5x-21 | | y2-12y-36=0 | | 11n−1=6n+19 | | 20-(0.75-s)8=6 | | q÷6=17 | | 1/3+2x/4=5 | | 1/3x-8=5/6x+4 | | -6(2c+4)-1=-2(c+5) | | x÷3-8=2 | | 2x2-10x-6=0 | | 86=2x-4(-4-3x) | | -6(3x+4)-3x=-9(2x+5)+23 | | 0.5(x)×(x)×(x)=32 | | 5(a-3)=3+5a-20 | | 59=9x-38 | | 59=9x-6 | | 6m^2+5=13m | | x2+16x=0 | | 129=11x-25 | | 51=11x-25 | | 4y-17=51 | | 141=13x-2 | | -16x^2+32x+20=x | | 3x/2=9/11 | | 2/5x-7/10x+3/10=12 |