If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2-13=0
We add all the numbers together, and all the variables
z^2-13=0
a = 1; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·1·(-13)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{13}}{2*1}=\frac{0-2\sqrt{13}}{2} =-\frac{2\sqrt{13}}{2} =-\sqrt{13} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{13}}{2*1}=\frac{0+2\sqrt{13}}{2} =\frac{2\sqrt{13}}{2} =\sqrt{13} $
| 2x²+3x-1=0 | | 2n+6=48n= | | x^2+10x-2250=0 | | 2(2x+8)=13 | | 3/4=z/20 | | (x+2)(x-1,35)-3x=0 | | 4e+2=-6 | | 5x^2+45x-49860=0 | | 6d-7=-25 | | (x+2)(x-1,35)-3=0 | | 2x+5x=-13 | | 12.8=8.15+m | | Y=2x(5x+10) | | 21/30=x/40 | | 3(y+4)+5(y−2=) | | X2+2i=0 | | h-21=33 | | r/7.3=-8 | | 20v–9=19v-4 | | x2+-15x+-100=0 | | 7t-2=5+10 | | 6^(x-2)-6^x=222 | | (2n+2n)·(3n+3n+3n)=6^25 | | (2n+2n)·(3n+3n+3n)=625 | | 16=3y+5 | | 0.5t^2-t+0.25=0 | | |5t|=20 | | 6(y-3)-5(y-8)=48-3(y-2) | | 5x-49=X-9 | | 2-(2x-7)+5=23 | | 3x+36=28 | | 3^(4-x)=81 |