If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2=0.81
We move all terms to the left:
z2-(0.81)=0
We add all the numbers together, and all the variables
z^2-0.81=0
a = 1; b = 0; c = -0.81;
Δ = b2-4ac
Δ = 02-4·1·(-0.81)
Δ = 3.24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{3.24}}{2*1}=\frac{0-\sqrt{3.24}}{2} =-\frac{\sqrt{}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{3.24}}{2*1}=\frac{0+\sqrt{3.24}}{2} =\frac{\sqrt{}}{2} $
| 17w-(2w-8)=-25 | | -16+b=-7 | | 400=g2 | | 3(r-6)-7=4 | | 12-x^2=x=0 | | 2/3+3m/5=32/15 | | 3/8p=-1/2 | | X+30=x-12 | | 7x-12+2x=4+9x-16 | | 5(x+3)=9x-9 | | 1/3s+s-10+s-20+40=360 | | 23=-4m=2=m | | 36=d2 | | -3(5y-7)-y=-2(y-4 | | -5x-10=2-x=4 | | 24x^2-32=196 | | 256=v2 | | v/9=-8 | | -4(9g)=-252 | | 20x-8=50x+4 | | y=3+8.5•-4 | | 24=-c+3c+4 | | 3+6x=-3x-5 | | 2+5a=42 | | g/9-9.2=-1 | | 2(1-8b)=1/4(8-64b) | | -4m+5-2m=-23 | | R(x)=44x-0.01x^2 | | Y=1.09x+1.37 | | 37=(3x-4)+(2x+1) | | 3/7=(-21x-49 | | (x+3)+(2x+1)+3x=180 |