If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2=9/49
We move all terms to the left:
z2-(9/49)=0
We add all the numbers together, and all the variables
z2-(+9/49)=0
We add all the numbers together, and all the variables
z^2-(+9/49)=0
We get rid of parentheses
z^2-9/49=0
We multiply all the terms by the denominator
z^2*49-9=0
Wy multiply elements
49z^2-9=0
a = 49; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·49·(-9)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*49}=\frac{-42}{98} =-3/7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*49}=\frac{42}{98} =3/7 $
| t-1.9=15;7 | | -26.4x-52.5=x-1373.18 | | 15+15x=20+10x | | g2=9/12 | | g6=9/12 | | -27.1r-75.6=910.84 | | 5/12r-8=44 | | 2r+10=80 | | -21.3r-43.3=-96.55 | | -20.7c-64.7=537.67 | | 15(-4+3)31y=-3 | | -25.6x-86.2=1143.48 | | -r-16=2r-19 | | 18g+4.5=-859.5 | | y+5-2y=-10 | | -3.8x-0.9=-4.3 | | -22z-59=z+378 | | z-84=4z-21 | | 28s^2-53s+24=0 | | a-1062=-26a-9 | | x−42=10(2x+3)−15 | | 9n+25=n-287 | | 2p=3244 | | 15y+5=y-331 | | n×(n+2)=224 | | n×(n+2=224 | | r+59=-4r-6 | | C+59=-7c-5 | | a^2+54a=0 | | 4(z-3.7)=44 | | W2-5w+6=0 | | y+(-2)=-7 |