If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2=9z
We move all terms to the left:
z2-(9z)=0
We add all the numbers together, and all the variables
z^2-9z=0
a = 1; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·1·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*1}=\frac{0}{2} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*1}=\frac{18}{2} =9 $
| -8x+10=2(5-2x)-2(2x) | | 4x-7=2x+13=33 | | 4(x^2-1)=8 | | 15+3w=5 | | C-12=3x8 | | -33=4(x-9) | | 3(-2x+5)+10=4x-5 | | 3(x+8)=8(x+3) | | 16x-4(8-5x)=-32 | | Y=145-5x | | 4x+7(x-9)=25 | | 5x+46=50 | | 2m-4=5m-25 | | 5x-20=3x^2 | | -8(v+8)=7v+41 | | 4b−11=1−2(3−b | | n+51=599 | | 2377200+20x=2067200+120x | | -2(3p+4)=4 | | n-51=599 | | (2+3w)=(4) | | -18=-3(f−12) | | 32=5x=22-3x | | 2377200+20x=3000000 | | k/2+1.2=3 | | -8+c=-3 | | 10w+7=-143 | | -15x-11=41 | | 54=-10v-6 | | (1/27)^x+2=-81 | | 5b/12=-5/8 | | x/2+x/5=-28 |