If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z=(5z+7)(2-z)=0
We move all terms to the left:
z-((5z+7)(2-z))=0
We add all the numbers together, and all the variables
z-((5z+7)(-1z+2))=0
We multiply parentheses ..
-((-5z^2+10z-7z+14))+z=0
We calculate terms in parentheses: -((-5z^2+10z-7z+14)), so:We get rid of parentheses
(-5z^2+10z-7z+14)
We get rid of parentheses
-5z^2+10z-7z+14
We add all the numbers together, and all the variables
-5z^2+3z+14
Back to the equation:
-(-5z^2+3z+14)
5z^2-3z+z-14=0
We add all the numbers together, and all the variables
5z^2-2z-14=0
a = 5; b = -2; c = -14;
Δ = b2-4ac
Δ = -22-4·5·(-14)
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{71}}{2*5}=\frac{2-2\sqrt{71}}{10} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{71}}{2*5}=\frac{2+2\sqrt{71}}{10} $
| 7/8=-1/8x^2+2 | | X+(-4)+8=2x+(-7) | | 9=49+m | | 128=2(x)^3 | | 2x+2x+x+x=210 | | 5d^2+10d+8=2d^2 | | -5=21+f | | 2x+(-4)+7=x+(-4)+9 | | z=(5z+7)(2-z) | | 3d^2-11d+8=6 | | 81=41+c | | 3d^2+10d+8=0 | | -2c^2-9c-2=-3c^2 | | -2c^2-9c-2=0 | | 20=50-y | | 1=-4n+3(6+2n)-19 | | 17=85+t | | X+.16x=27000 | | 93=e-30 | | 8x+9=10x-7 | | 2/3=x51 | | 21=p-112 | | -36=2(2-8n) | | 27=12x-x*x*x | | 3(4n-5=)-17 | | 15w^2+6w-1=0 | | 14=x^2+7x+6 | | M=h-15 | | -2/5u=-14 | | 68=59+w | | 11=48-d | | x^2+1.80x-0.13986=0 |